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Problem Set #4

Recall first the two following result:

Lemma: Let 0 // L
f //M

g // N // 0 be a short exact sequence; then M is
Noetherian (Artinian) if and only if N and L are both Noetherian (Artinian).
Proof: (⇒) Suppose M is Noetherian. Since L can be viewed as a submodule of M ,
every submodule of L is a submodule of M which is f.g., therefore L is Noetherian. On
the other hand, if N ′ is a submodule of N , then the submodule g−1(N ′) is f.g., so that
N ′ is f.g. as g is surjective. Therefore N is also Noetherian.
(⇐) Let M1 ⊆ M2 ⊆ M3 ⊆ ... be an ascending chain of submodules of M . Since
N and L are Noetherian, there is an integer n such that f−1(Mi) = f−1(Mn) and
g(Mi) = g(Mn) for every i ≥ n. To finish the proof, it suffices to show that Mn+1 = Mn.
For this, let x ∈Mn+1; then there is an element y ∈Mn such that g(x) = g(y), so that
x−y ∈ ker(g) = Im(f), it follows that there is an element z ∈ L such that f(z) = x−y.
However, x− y ∈Mn+1 and z ∈ L, z ∈ f−1(Mn+1) = f−1(Mn). Therefore x− y ∈Mn

as f is 1.1, Hence, x ∈Mn. The same kind of proof can be written for the Artinian part.

Lemma: Consider a finite chain of submodule of M , say (0) = M0 ⊂M1 ⊂M2 ⊂ ... ⊂
Ms = M . Then M is Artinian (resp. Noetherian) if and only if each quotient module
Mj+1/Mj is Artinian (resp. Noetherian).
Proof: Apply the previous lemma inductively for j ≥ 0 to the sequences

0 //Mj
//Mj+1

//Mj+1/Mj
// 0

Exercise 7 p 23 of [N]
In a noetherian ring R in which every prime ideal is maximal, each descending chain

.... ⊆ a2 ⊆ a1

becomes stationary, that is R is Artinian.
Solution:
Let R be a noetherian ring in which every prime ideal is maximal.
We Claim: Any ideals a in R contains a product of prime ideals p1, p2, ..., pr, that is

p1....pr ⊆ a

Indeed, suppose the set M of those ideals which do not fulfill this condition is not empty.
As R is noetherian, every ascending chain of ideals becomes stationary. Therefore M
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is inductively ordered with respect to inclusion and thus admits a maximal element a.
This cannot be a prime ideal, so there exist elements b1, b2 ∈ R such that b1b2 ∈ a but
b1, b2 /∈ a. Put a1 = (b1) + a, a2 = (b2) + a. Then a ( a1, a ( a2 and a1a2 ( a. By
maximality of a, both a1 and a2 contain a product of prime ideals, and the product of
these product is contained in a, a contradiction.

In particular, (0) is a product of prime but since we are assuming that any prime
ideal is maximal. We can write (0) = m1...mn where mi are maximal ideals. Now, we
prove that this implies the required result. For this consider the sequence

(0) = m1m2...mn ⊆ ... ⊆ m1m2 ⊆ m1 ⊆ R

of ideals of R.
Each factors m1...mi−1/m1....mi is a vector space over the field R/mi. Hence, being
Artinian is equivalent of being noetherian for each factor. Now applying the previous
lemmas, we obtain that R is noetherian if and only if R is Artinian.

Exercise 8 p 23 of [N]
Let m be a zero integral ideal of the Dedekind domain O. Show that in every ideal
class of ClK , there exists an integral ideal prime to m.

Solution:
Let m be a zero integral ideal of the Dedekind domain O, we write

m = p
vp1 (m)
1 ...pvpr (m)

r

. We want an integral ideal a prime to m, i.e. with no common prime ideal in their
decomposition such that am−1 is principal let’s say equals (x) for some x ∈ O.

Now, via Chinese remainder theorem as we have already done for exercise 5, we can
choose x so that vpi(x) = vpi(m) for any i. Now, put a = (x)m−1 then vpi(a) = 0 for
any i and vq(a) ≥ 0 so that a is an integral ideal prime to m and am−1 = (x).
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Exercise 9 p 23 of [N]
Let O be an integral domain in which all nonzero ideals admit a unique factorization
into prime ideals. Show that O is a Dedekind domain.

Solution:
Let O be an integral domain in which all nonzero ideals admit a unique factorization
into prime ideals.
We have that any fractional ideal is invertible and for any fractional ideal a its inverse
is

a−1 = {x ∈ K|xa ⊆ O}

We recall that for any prime ideal p, pp−1 = O. Indeed p ( pp−1 ⊆ O. Since p is
maximal, it follows that pp−1 = O. Moreover, if a an ideal of O and

a = p
vp1 (a)
1 ...pvpr (a)r

Then
b = p

−vp1 (a)
1 ...p−vpr (a)r

in such that ba = O, so that b ⊆ a−1. Conversely, if xa ⊆ O then xab ⊆ b, so x ∈ b.
So a is invertible, since each fractional ideal is quotient of integral ideal each fractional
ideal is product prime with some valuation in Z and then also invertible. Then, we
prove that if every fractional ideal is invertible then O is Dedekind.

1. First let prove that O is noetherian. For that it is enough to prove that any ideal
of O is finitely generated. In fact, let a be an integral ideal since aa−1 = O. In
particular, the unit 1 of R can be written as 1 = a1b1 + .....+anbn with ai ∈ a and
bi ∈ a−1, so that a = a1(b1a) + .....+an(bna) ∈ (a1, ...., an), since bia ∈ O. So that
a = (a1, ..., an) is finitely generated.

2. Now, we prove that any prime ideal is maximal. Let p be a prime ideal, and m
containing p. As m is invertible, there exists an ideal a such that p = ma. Then,
a ⊆ p or m ⊆ p. The first case gives p ⊆ mp and by canceling the invertible ideal
p implies that m = O, a contradiction. So the second case must be true and, by
maximality of m, p = m, showing that all prime ideals are maximal.

3. Now, let prove that O is integrally closed. Let x be an element of the field of frac-
tion k of O and integral over O. Then, we can write xn = c0+c1x+ ....+cn−1xn−1
for coefficients ck ∈ O. Let a be the fractional ideal of O, a = (1, x, x2, ..., xn−1)
so that since xn ∈ a, xa ⊆ a. As a is invertible, it can be cancelled to give x ∈ O,
showing that R is integrally closed.
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