Dr. Marques Sophie Office 519 Number theory

Spring Semester 2014 marques@cims.nyu.edu

Problem Set #4

Recall first the two following result:

Lemma: Let $0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ be a short exact sequence; then M is Noetherian (Artinian) if and only if N and L are both Noetherian (Artinian). **Proof:** (\Rightarrow) Suppose M is Noetherian. Since L can be viewed as a submodule of M, every submodule of L is a submodule of M which is f.g., therefore L is Noetherian. On the other hand, if N' is a submodule of N, then the submodule $q^{-1}(N')$ is f.g., so that

N' is f.g. as g is surjective. Therefore N is also Noetherian. (\Leftarrow) Let $M_1 \subseteq M_2 \subseteq M_3 \subseteq ...$ be an ascending chain of submodules of M. Since N and L are Noetherian, there is an integer n such that $f^{-1}(M_i) = f^{-1}(M_n)$ and $g(M_i) = g(M_n)$ for every $i \ge n$. To finish the proof, it suffices to show that $M_{n+1} = M_n$. For this, let $x \in M_{n+1}$; then there is an element $y \in M_n$ such that g(x) = g(y), so that $x - y \in ker(g) = Im(f)$, it follows that there is an element $z \in L$ such that f(z) = x - y. However, $x - y \in M_{n+1}$ and $z \in L$, $z \in f^{-1}(M_{n+1}) = f^{-1}(M_n)$. Therefore $x - y \in M_n$ as f is 1.1, Hence, $x \in M_n$. The same kind of proof can be written for the Artinian part.

Lemma: Consider a finite chain of submodule of M, say $(0) = M_0 \subset M_1 \subset M_2 \subset ... \subset M_s = M$. Then M is Artinian (resp. Noetherian) if and only if each quotient module M_{j+1}/M_j is Artinian (resp. Noetherian).

Proof: Apply the previous lemma inductively for $j \ge 0$ to the sequences

 $0 \longrightarrow M_j \longrightarrow M_{j+1} \longrightarrow M_{j+1}/M_j \longrightarrow 0$

Exercise 7 p 23 of |N|

In a noetherian ring R in which every prime ideal is maximal, each descending chain

$$\ldots \subseteq \mathfrak{a}_2 \subseteq \mathfrak{a}_1$$

becomes stationary, that is R is Artinian. Solution:

Let R be a noetherian ring in which every prime ideal is maximal. We **Claim:** Any ideals \mathfrak{a} in R contains a product of prime ideals $\mathfrak{p}_1, \mathfrak{p}_2, ..., \mathfrak{p}_r$, that is

$$\mathfrak{p}_1...\mathfrak{p}_r\subseteq\mathfrak{a}$$

Indeed, suppose the set \mathfrak{M} of those ideals which do not fulfill this condition is not empty. As R is noetherian, every ascending chain of ideals becomes stationary. Therefore \mathfrak{M} is inductively ordered with respect to inclusion and thus admits a maximal element \mathfrak{a} . This cannot be a prime ideal, so there exist elements $b_1, b_2 \in \mathbb{R}$ such that $b_1b_2 \in \mathfrak{a}$ but $b_1, b_2 \notin \mathfrak{a}$. Put $\mathfrak{a}_1 = (b_1) + \mathfrak{a}$, $\mathfrak{a}_2 = (b_2) + \mathfrak{a}$. Then $\mathfrak{a} \subsetneq \mathfrak{a}_1$, $\mathfrak{a} \subsetneq \mathfrak{a}_2$ and $\mathfrak{a}_1\mathfrak{a}_2 \subsetneq \mathfrak{a}$. By maximality of \mathfrak{a} , both \mathfrak{a}_1 and \mathfrak{a}_2 contain a product of prime ideals, and the product of these product is contained in \mathfrak{a} , a contradiction.

In particular, (0) is a product of prime but since we are assuming that any prime ideal is maximal. We can write $(0) = \mathfrak{m}_1 \dots \mathfrak{m}_n$ where \mathfrak{m}_i are maximal ideals. Now, we prove that this implies the required result. For this consider the sequence

 $(0) = \mathfrak{m}_1 \mathfrak{m}_2 \dots \mathfrak{m}_n \subseteq \dots \subseteq \mathfrak{m}_1 \mathfrak{m}_2 \subseteq \mathfrak{m}_1 \subseteq R$

of ideals of R.

Each factors $\mathfrak{m}_1...\mathfrak{m}_{i-1}/\mathfrak{m}_1...\mathfrak{m}_i$ is a vector space over the field R/\mathfrak{m}_i . Hence, being Artinian is equivalent of being noetherian for each factor. Now applying the previous lemmas, we obtain that R is noetherian if and only if R is Artinian.

Exercise 8 p 23 of [N]

Let \mathfrak{m} be a zero integral ideal of the Dedekind domain \mathcal{O} . Show that in every ideal class of Cl_K , there exists an integral ideal prime to \mathfrak{m} .

Solution:

Let \mathfrak{m} be a zero integral ideal of the Dedekind domain \mathcal{O} , we write

$$\mathfrak{m}=\mathfrak{p}_{1}^{v_{\mathfrak{p}_{1}}(\mathfrak{m})}...\mathfrak{p}_{r}^{v_{\mathfrak{p}_{r}}(\mathfrak{m})}$$

. We want an integral ideal \mathfrak{a} prime to \mathfrak{m} , i.e. with no common prime ideal in their decomposition such that \mathfrak{am}^{-1} is principal let's say equals (x) for some $x \in \mathcal{O}$.

Now, via Chinese remainder theorem as we have already done for exercise 5, we can choose x so that $v_{\mathfrak{p}_i}(x) = v_{\mathfrak{p}_i}(\mathfrak{m})$ for any i. Now, put $\mathfrak{a} = (x)\mathfrak{m}^{-1}$ then $v_{\mathfrak{p}_i}(\mathfrak{a}) = 0$ for any i and $v_{\mathfrak{q}}(\mathfrak{a}) \geq 0$ so that \mathfrak{a} is an integral ideal prime to \mathfrak{m} and $\mathfrak{a}\mathfrak{m}^{-1} = (x)$.

Exercise 9 p 23 of [N]

Let \mathcal{O} be an integral domain in which all nonzero ideals admit a unique factorization into prime ideals. Show that \mathcal{O} is a Dedekind domain.

Solution:

Let \mathcal{O} be an integral domain in which all nonzero ideals admit a unique factorization into prime ideals.

We have that any fractional ideal is invertible and for any fractional ideal \mathfrak{a} its inverse is

$$\mathfrak{a}^{-1} = \{ x \in K | x \mathfrak{a} \subseteq \mathcal{O} \}$$

We recall that for any prime ideal \mathfrak{p} , $\mathfrak{p}\mathfrak{p}^{-1} = \mathcal{O}$. Indeed $\mathfrak{p} \subsetneq \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathcal{O}$. Since \mathfrak{p} is maximal, it follows that $\mathfrak{p}\mathfrak{p}^{-1} = \mathcal{O}$. Moreover, if \mathfrak{a} an ideal of \mathcal{O} and

$$\mathfrak{a}=\mathfrak{p}_{1}^{v_{\mathfrak{p}_{1}}(\mathfrak{a})}...\mathfrak{p}_{r}^{v_{\mathfrak{p}_{r}}(\mathfrak{a})}$$

Then

$$\mathfrak{b} = \mathfrak{p}_1^{-v_{\mathfrak{p}_1}(\mathfrak{a})}...\mathfrak{p}_r^{-v_{\mathfrak{p}_r}(\mathfrak{a})}$$

in such that $\mathfrak{ba} = \mathcal{O}$, so that $\mathfrak{b} \subseteq \mathfrak{a}^{-1}$. Conversely, if $x\mathfrak{a} \subseteq \mathcal{O}$ then $x\mathfrak{ab} \subseteq \mathfrak{b}$, so $x \in \mathfrak{b}$. So \mathfrak{a} is invertible, since each fractional ideal is quotient of integral ideal each fractional ideal is product prime with some valuation in \mathbb{Z} and then also invertible. Then, we prove that if every fractional ideal is invertible then \mathcal{O} is Dedekind.

- 1. First let prove that \mathcal{O} is noetherian. For that it is enough to prove that any ideal of \mathcal{O} is finitely generated. In fact, let \mathfrak{a} be an integral ideal since $\mathfrak{a}\mathfrak{a}^{-1} = \mathcal{O}$. In particular, the unit 1 of R can be written as $1 = a_1b_1 + \dots + a_nb_n$ with $a_i \in \mathfrak{a}$ and $b_i \in \mathfrak{a}^{-1}$, so that $a = a_1(b_1a) + \dots + a_n(b_na) \in (a_1, \dots, a_n)$, since $b_ia \in \mathcal{O}$. So that $\mathfrak{a} = (a_1, \dots, a_n)$ is finitely generated.
- 2. Now, we prove that any prime ideal is maximal. Let p be a prime ideal, and m containing p. As m is invertible, there exists an ideal a such that p = ma. Then, a ⊆ p or m ⊆ p. The first case gives p ⊆ mp and by canceling the invertible ideal p implies that m = O, a contradiction. So the second case must be true and, by maximality of m, p = m, showing that all prime ideals are maximal.
- 3. Now, let prove that \mathcal{O} is integrally closed. Let x be an element of the field of fraction k of \mathcal{O} and integral over \mathcal{O} . Then, we can write $x_n = c_0 + c_1 x + \ldots + c_{n-1} x_{n-1}$ for coefficients $c_k \in \mathcal{O}$. Let \mathfrak{a} be the fractional ideal of \mathfrak{O} , $\mathfrak{a} = (1, x, x^2, \ldots, x^{n-1})$ so that since $x^n \in \mathfrak{a}$, $x\mathfrak{a} \subseteq \mathfrak{a}$. As \mathfrak{a} is invertible, it can be cancelled to give $x \in \mathcal{O}$, showing that R is integrally closed.